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wherep: density of the plate material; h: plate thickness; D: flexural

rigidity of the plate and p: Poisson ratio. Poisson’s ratio is taken

equal to 0.30 for present calculations.

Approximating W by means of

where the aj’s and 13~’s are such that each coordinate function

contained in (9) satisfies identically the boundary conditions (8b) and

(8c). Applying Galerkin’s procedure one obtains, minimizing with

respect to ~, that the first, nonzero, eigenvalue is -WI a’ =

9.003 which coincides with the exact vahte, within 4 significant

figures. The higher eigenvaIues are, again, obta@ed minimizing the

higher roots of the frequency equation with respect to y [5].

It

also
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is important to point out that this optimization procedure has

been implemented in finite element codes [8].
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Corrections to “A New Formulation of the Boundary

Condition at Infinity for a Hybrid Radiation

Mode and Its Application to the Analysis of

the Radiation Modes of Microstrip Lines”

Wlodzimierz Zieniutycz

In the above paper [1] a few corrections should be introduced as

a result of additional analysis and numerical calculation:

●

●

For the odd case (J. (~) – odd) application of (12) leads to

infinite power flux for both solutions of (11). The analysis of

behavior of A~) (Q) at the points a = O and a = 72 yields

the value of the amplitude which gives the finite power flux of

perturbed LSM mode. The proper choice of this amplitude is:

(1)

where p > 0. The perturbed LSE odd solution of (11) shows

infinite power flux-this mode has no physical meaning and

should be neglected.

The iterative procedure described in Section III of [1] is diver-

gent for even case (.JZ(a) – even). We can, however, rearrange

(11) to an alte~ative set of equations:

(2)A~)(a) = f3[A~)(a), As) (a)]

(3)As)(a) = f4[A9(ci), Af)(a)]

Spectral amplitude A~) (a) is treated now as a known function

and A~) (a) is found by the same iterative procedure (in Fig. 3

[1] we should only replace A$) (a) with A~) (a)). The analysis

of behaviour of .4~) (a) at tie points o = O and a = 72 yields

the amplitude which results in the finite power flux of perturbed

LSE mode. The proper choice of this amplitude is:

p+l/2
A$)(Q) w y2 (4)

where p > 0. The second solution (i.e. perturbed LSM even

mode) should be neglected as a mode showing infinite power

flux. Numerical results of convergence of the proposed proce-

dure are shown in Table I.

In effect we conclude that the hr mode of microstrip line can

be treated as a superposition of perturbed LSM odd and LSE even

modes. Numerical calculation (see Table I) showed that the modifi-

cations did not change the fast convergence of iterative procedure.
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TABLE I
NUMBER OF ITERATIONSREQUIREDFOR CONVERGENCEFOR LSE EVEN AND

LSM ODD PERTURBEDbr MODES OF MICROSTRIP LINE [1]

(w = D = 1 mm, E,l = 9.6), COMPUTATIONSWERE CARRIED OUT
AT FREQUENCY 15 GHz WITH RELATIVE ERROR q = O.01

@ [rad/mm] 0.3 0.2 0.1 0.01 -jO.l -jO.2 -jO.3

odd case 3 .5 3 3 3 3 3

even case 3 4 2 2 2 3 2
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