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where p: density of the plate material; h: plate thickness; D: flexural
rigidity of the plate and u: Poisson ratio. Poisson’s ratio is taken
equal to 0.30 for present calculations.

Approximating W by means of

2 T\ r\2 r\2
W Wa —§AJ [%(;) +o(3) + 1] ) ©
where the o,’s and §,’s are such that each coordinate function
contained in (9) satisfies identically the boundary conditions (8b) and
(8c). Applying Galerkin’s procedure one obtains, minimizing with
respect to -y, that the first, nonzero, eigenvalue is \/ph/Dwia® =
9.003 which coincides with the exact value, within 4 significant
figures. The higher eigenvalues are, again, obtained minimizing the
higher roots of the frequency equation with respect to v [S].

It is important to point out that this optimization procedure has
also been implemented in finite element codes [8].
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Corrections to “A New Formulation of the Boundary
Condition at Infinity for a Hybrid Radiation
Mode and Its Application to the Analysis of

the Radiation Modes of Microstrip Lines”

Wiodzimierz Zieniutycz

In the above paper [1] a few corrections should be introduced as
a result of additional analysis and numerical calculation:

» For the odd case (J.(a) — odd) application of (12) leads to
infinite power flux for both solutions of (11). The analysis of
behavior of Ag)(a) at the points o« = 0 and o = 72 yields
the value of the amplitude which gives the finite power flux of
perturbed LSM mode. The proper choice of this amplitude is:

AP () ~ A tH2 )

where p > 0. The perturbed LSE odd solution of (11) shows
infinite power flux—this mode has no physical meaning and
should be neglected.

« The iterative procedure described in Section HI of [1] is diver-
gent for even case (J.(«) — even). We can, however, rearrange
(11) to an alterpative set of equations:

AD(a) = £3[42(a), AD ()] )
AP(a) = £1[AP (). AD ()] 3)

Spectral amplitude Ag) () is treated now as a known function
and Ag)(a) is found by the same iterative procedure (in Fig. 3
[1] we should only replace Ag) () with Ag) («)). The analysis
of behaviour of Ag)( o) at the points o = 0 and o = 2 yields
the amplitude which results in the finite power flux of perturbed
LSE mode. The proper choice of this amplitude is:

AD (@) ~ BT @

where p > 0. The second solution (i.e. perturbed LSM even
mode) should be neglected as a mode showing infinite power
flux. Numerical results of convergence of the praposed proce-
dure are shown in Table 1.

In effect we conclude that the hr mode of microstrip line can
be treated as a superposition of perturbed LSM odd and LSE even
modes. Numerical calculation (see Table I) showed that the modifi-
cations did not change the fast convergence of iterative procedure.
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TABLE 1
NUMBER OF ITERATIONS REQUIRED FOR CONVERGENCE FOR LSE EvVEN AND
LSM OpD PERTURBED hr MODES OF MICROSTRIP LINE [1]
(w=D = 1mm, 1 = 9.6), COMPUTATIONS WERE CARRIED OUT
AT FREQUENCY 15 GHz witd RELATIVE ERROR 77 = 0.01

B [rad/mm] [{ 0.3 0.2]0.1]0.01 {-j0.1]-30.2 1-30.3
odd case 3 5 3 3 3 3 3
even case 3 4 2 2 2 3 2
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